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Abstract: Natural language and images are commonly used as goal representa-1

tions in goal-conditioned imitation learning. However, language can be ambigu-2

ous and images can be over-specified. In this work, we study hand-drawn sketches3

as a modality for goal specification. Sketches can be easy to provide on the fly like4

language, but like images they can also help a downstream policy to be spatially-5

aware. By virtue of being minimal, sketches can further help disambiguate task-6

relevant from irrelevant objects. We present RT-Sketch, a goal-conditioned policy7

for manipulation that takes a hand-drawn sketch of the desired scene as input, and8

outputs actions. We train RT-Sketch on a dataset of trajectories paired with syn-9

thetically generated goal sketches. We evaluate this approach on six manipulation10

skills involving tabletop object rearrangements on an articulated countertop. Ex-11

perimentally we find that RT-Sketch performs comparably to image or language-12

conditioned agents in straightforward settings, while achieving greater robustness13

when language goals are ambiguous or visual distractors are present. Additionally,14

we show that RT-Sketch handles sketches with varied levels of specificity, rang-15

ing from minimal line drawings to detailed, colored drawings. For supplementary16

material and videos, please visit http://rt-sketch-anon.github.io.17

Keywords: Visual Imitation Learning, Goal-Conditioned Manipulation18

1 Introduction19

Figure 1: Rollouts showing RT-Sketch’s robustness to sketch detail, ambiguous language, and visual distractors.

Robots operating alongside humans in the home or workplace have an immense potential for assis-20

tance and autonomy, but careful consideration is needed of what goal representations are easiest for21

humans to convey to robots, and for robots to interpret and act upon.22

Instruction-following robots attempt to address this problem using the intuitive interface of natural23

language commands as inputs to language-conditioned imitation learning policies [1, 2, 3, 4, 5]. For24
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instance, imagine asking a household robot to set the dinner table. A language description such25

as “put the utensils, the napkin, and the plate on the table” is under-specified or ambiguous. It is26

unclear how exactly the utensils should be positioned relative to the plate or the napkin, or whether27

their distances to each other matter or not. To achieve this higher level of precision, a user may need28

to give lengthier descriptions such as “put the fork 2cm to the right of the plate, and 5cm to the29

leftmost edge of the table.”, or even online corrections (“no, you moved too far to the right, move30

back a bit!”) [6, 5]. While intuitive, the qualitative nature and ambiguity of language can make it31

both inconvenient for humans to provide without lengthy instructions or corrections, and for robot32

policies to interpret for downstream precise manipulation.33

Using a goal image (i.e. an image of the scene in its final desired state) to specify objectives and34

train goal-conditioned imitation learning policies has shown to be quite successful in recent years,35

with or without language [7, 8, 9]. However, this has its own shortcomings: access to a goal image is36

a strong prior assumption, and a pre-recorded goal image is tied to a particular environment, making37

it difficult to reuse for generalization. To summarize: while natural language is highly flexible, it38

can also be highly ambiguous or require lengthy descriptions. This quickly becomes difficult in39

long-horizon tasks or those requiring spatial awareness. Meanwhile, goal images over-specify goals40

in unnecessary detail, leading to the need for internet-scale data for generalization.41

To address these challenges, we study hand-drawn sketches as a convenient yet expressive modality42

for goal specification. By virtue of being minimal, sketches are still easy to provide on the fly like43

language, but allow for more spatially-aware task specification. Like goal images, sketches readily44

integrate with off-the-shelf policy architectures that take visual input, but provide an added level of45

goal abstraction that ignores unnecessary pixel-level details. Finally, sketches can inform a policy46

of task relevant/irrelevant objects based on whether details are included/excluded in a sketch.47

In this work, we present RT-Sketch, a goal-conditioned policy for manipulation that takes a hand-48

drawn sketch of the desired scene as input, and outputs actions. The novel architecture of RT-49

Sketch modifies the original RT-1 language-to-action Transformer architecture [1] to consume visual50

goals rather than language, allowing for flexible conditioning on sketches, images, or any other51

visually representable goals. To enable this, we concatenate a goal sketch and history of observations52

as input before tokenization, omitting language. We train RT-Sketch on a dataset of 80K trajectories53

paired with synthetic goal sketches, generated by an image-to-sketch stylization network trained54

from a few hundred image-sketch pairs.55

We evaluate RT-Sketch across six manipulation skills on real robots involving tabletop object rear-56

rangements on a countertop with drawers, subject to a wide range of scene variations. These skills57

include rearranging objects, placing cans and bottles sideways or upright, and opening and closing58

drawers. Experimentally, we find that RT-Sketch performs on a similar level to image or language-59

conditioned agents in straightforward settings. When language instructions are ambiguous, or in the60

presence of visual distractors (Figure 1, right), we find that RT-Sketch achieves 2.71X and 1.63X61

higher spatial alignment scores over language or goal image-conditioned policies, respectively (see62

Fig. 3 (H3/4)). Additionally, we show that RT-Sketch can handle different levels of input specificity,63

ranging from rough sketches to more scene-preserving, colored drawings (Fig. 1, left). Finally, we64

also include results that suggest the compatibility of sketches with language, showing promise of65

multimodal goal specification in the future.66

2 Related Work67

In this section, we discuss prior methods for goal-conditioned imitation learning (IL) and recent68

efforts towards image-sketch translation, which we build on towards sketch-condition IL.69

Goal-Conditioned Imitation Learning Reinforcement learning (RL) is not easily applicable in70

our scenario, as it is nontrivial to define a reward objective which accurately quantifies alignment71

between a provided scene sketch and states achieved by an agent. We instead focus on IL techniques,72

particularly the goal-conditioned setting [10]. Goal-conditioned IL has proven useful in settings73

where a policy needs to handle different variations of the same task [11]. Examples include moving74

objects into different arrangements [1, 2, 5, 12, 9], kitting [13], folding of deformable objects into75

different configurations [14], and search for different target objects in clutter [15]. However, these76
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approaches tend to condition on either language [1, 4, 5, 3, 16], or images [15] to specify goals.77

Follow-up work enabled multimodal conditioning on either goal images and language [8], in-prompt78

images [7], or image embeddings [12, 13, 14]. All of these representations are ultimately derived79

from raw images or language, which overlooks the potential for more abstract goals like sketches.80

Beyond inflexible goal representations, goal-conditioned IL tends to overfit to demonstration data81

and fails to handle even slight distribution shifts [17]. For language, this can encompass ambigu-82

ous or novel phrasing or unseen objects [8, 1]. Goal-image conditioning is similarly susceptible to83

out-of-distribution visual shifts, such as lighting variations or unseen object and background appear-84

ances [18, 19]. Instead, sketches are minimal enough to combat visual distractors, yet expressive85

enough to provide unambiguous goals. Prior work, including [20] and [21], have shown the util-86

ity of sketches over pure language for navigation and limited manipulation. However, the sketches87

explored in these works are largely intended to guide low-level motion at the joint-level for manip-88

ulation, or provide explicit directional cues for navigation. [22] considers sketches amongst other89

modalities as an input for goal-conditioned manipulation, but does not explicitly train a policy condi-90

tioned on sketches. They thus came to the conclusion that the scene image is better than the sketch at91

goal specification. Our result is different and complementary, in that policies trained to take sketches92

as input outperform a scene image conditioned policy, by 1.63x and 1.5x in terms of Likert ratings93

for perceived spatial and semantic alignment, subject to visual distractors. Other recent works pro-94

pose goal-conditioning on sketches that either represent the intended direction of positional [23, 24]95

or joint-level [25] robot movement. In contrast to these motion-centric representations, the sketches96

in our work are scene-centric, representing the desired visual goal state rather than the desired robot97

actions.98

Image-Sketch Conversion Sketches have been studied within the computer vision community99

for object detection [26, 27, 28], visual question answering [29, 30], and scene understanding [31],100

either in isolation or in addition to text and images. When considering how best to incorporate101

sketches in IL, an important design choice is whether to take sketches into account (1) at test time102

(by converting a sketch to another modality compatible with a pre-trained policy), or (2) at train103

time (by explicitly training a policy conditioned on sketches). For (1), one could first convert a104

given sketch to a goal image, and then roll out a vanilla goal-image conditioned policy. Existing105

frameworks tackle sketch-to-image conversion, such as ControlNet [32], GAN-style approaches106

[33], or text-to-image synthesis, such as InstructPix2Pix [34] or Stable Diffusion [35]. While these107

models can produce photorealistic visuals, they do not jointly handle image generation and style108

transfer, making it unlikely for generated images to match the style of agent observations. These109

approaches are also susceptible to hallucinated artifacts, introducing distribution shifts [32].110

Thus, we instead opt for (2), and consider image-to-sketch conversion techniques for hindsight re-111

labeling of demonstrations. Recently, Vinker et al. [36, 37] propose networks for predicting Bezier112

curve-based sketches of input images, supervised by a CLIP-based alignment metric. While these113

approaches generate visually compelling sketches, test-time generation takes on the order of min-114

utes, which does not scale to the typical size of robot learning datasets with hundreds to thousands of115

trajectories. Meanwhile, conditional generative adversarial networks (cGANs) such as Pix2Pix [38]116

have proven useful for scalable image-to-image translation. Most related to our work is that of Li117

et al. [39], which trains a Pix2Pix model to produce sketches from given images on a large crowd-118

sourced dataset of 5K paired images and line drawings. We build on this work to fine-tune an119

image-to-sketch model that maps robot observations to sketches, with which to train an IL policy.120

3 Sketch-Conditioned Imitation Learning121

Problem Statement We first formalize the problem of learning a manipulation policy conditioned122

on a goal sketch of the desired scene state and a history of interactions. We denote such a pol-123

icy by πsketch(at|g, {oj}
t
j=1), where at denotes an action at timestep t, g ∈ R

W×H×3 is a given124

goal sketch with width and height W and H , and ot ∈ R
W×H×3 is an observation at t. At in-125

ference time, the policy takes a given goal sketch along with a history of D previous RGB im-126

age observations, and outputs an action. To train such a policy, we assume access to a dataset127

Dsketch = {gn, {(ont , a
n
t )}

T (n)

t=1 }Nn=1 of N successful demonstrations, where T (n) refers to the length128
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Figure 2: Architecture of RT-Sketch allowing different kinds of visual input. RT-Sketch adopts the Trans-
former [40] architecture with EfficientNet [41] tokenization at the input, and outputs bucketized actions.

of the nth trajectory in timesteps. Each episode of the dataset consists of a given goal sketch and a129

corresponding demonstration trajectory, with images recorded at each timestep. Our goal is to thus130

learn the sketch-conditioned imitation policy πsketch(at|g, {oj}
t
j=1) trained on Dsketch.131

3.1 Image-to-Sketch Translation132

Training a sketch-conditioned policy requires a dataset of robot trajectories, each paired with a goal133

sketch. Collecting both demonstration trajectories and manually drawn sketches at scale is imprac-134

tical. Thus, we instead aim to learn an image-to-sketch translation network T (g|o) that takes an135

image observation o and outputs the corresponding goal sketch g. This network can be used to136

post-process an existing dataset of demonstrations D = {{(ont , a
n
t )}

T (n)

t=1 }Nn=1 with image observa-137

tions by appending a synthetically generated goal sketch to each demonstration. This produces a138

dataset for sketch-based IL: Dsketch = {gn, {(ont , a
n
t )}

T (n)

t=1 }Nn=1. In practice, we use the existing139

large-scale dataset of VR-teleoperated robot demonstrations from prior work, which included skills140

such as object pick and place, placing cans and bottles upright or sideways, and opening and closing141

cabinets [1]. Prior work previously trained a language-conditioned IL policy RT-1 from this data,142

but we extend this policy architecture to accommodate sketches, detailed in Section 3.2.143

Assumptions on Sketches There are innumerable ways for a human to provide a sketch corre-144

sponding to a given image of a scene. For controlled evaluation, we first assume that a given sketch145

respects the task-relevant contours of an associated image, such that tabletop edges, drawer handles,146

and task-relevant objects are included and discernible in the sketch. We do not assume contours in147

the sketch to be edge-aligned or pixel-aligned with those in an image. We do assume that the input148

sketch consists of black outlines at the very least, with optional color shading. We further assume149

that sketches do not contain information not present in the associated image, such as hallucinated150

objects, scribbles, or text, but may omit task-irrelevant details that appear in the original image.151

Sketch Dataset Generation To train an image-to-sketch translation network T , we collect a new152

dataset DT = {(oi, g
1
i , . . . , g

L(i)

i )}Mi=1 consisting of M image observations oi each paired with a153

set of goal sketches g1i , . . . , g
L(i)

i . Those represent L(i) different representations of the same image154

oi, in order to account for the fact that there are multiple, valid ways of sketching the same scene.155

To collect DT , we take 500 randomly sampled terminal images from demonstration trajectories in156

the RT-1 dataset, and manually draw sketches with black lines on a white background capturing the157

tabletop, drawers, and relevant objects visible on the table. While we personally annotate each robot158

observation with just one single sketch, we add this data to an existing, much larger non-robotic159

dataset of paired images and sketches [39]. This dataset captures inter-sketch variation via multiple160

crowdsourced sketches per image. We do not include the robot arm in our manual sketches, as we161

find a minimal representation to be most natural. Empirically, we find that our policy can handle162

such sketches despite actual goal configurations likely having the arm in view. We collect these163

drawings using a custom digital stylus drawing interface where user draws an edge-aligned sketch164

over the original image (Appendix Fig. 17) by tracing outlines. The final recorded sketch includes165

the user’s strokes in black on a white canvas.166
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Image-to-Sketch Training We implement the image-to-sketch translation network T with the167

Pix2Pix conditional generative adversarial network (cGAN) architecture, which is composed of a168

generator GT and a discriminator DT [38]. The generator GT takes an input image o, a random169

noise vector z, and outputs a goal sketch g. The discriminator DT is trained to discriminate amongst170

artificially generated versus ground truth sketches. We utilize the standard cGAN supervision loss to171

train both [39, 38]: LcGAN = minGT
maxDT

Eo,g[logDT (o, g)]+Eo,g[log(1−DT (o,GT (o, g))].172

We also add the L1 loss to encourage the produced sketches to align with ground truth sketches as173

in [39]. To account for the fact that there may be multiple valid sketches for a given image, we only174

penalize the minimum L1 loss incurred across all L(i) sketches provided for a given image as in Li175

et al. [39]. This is to prevent wrongly penalizing T for producing a valid sketch that aligns well with176

one example but not another simply due to stylistic differences in the ground truth sketches. The177

final objective is a λ-weighted combination of the average cGAN loss and the minimum alignment178

loss: LT = λ
L(i)

∑L(i)

k=1 LcGAN(oi, g
(k)
i ) + mink∈{1,...,L(i)} L1(oi, g

(k)
i )179

In practice, we supplement the 500 manually drawn sketches from DT by leveraging the existing180

larger-scale Contour Drawing Dataset [39]. We refer to this dataset as DCD, which contains 1000181

examples of internet-scraped images containing objects, people, animals from Adobe Stock, paired182

with L(i) = 5 crowd-sourced black and white outline drawings per image collected on Amazon183

Mechanical Turk (see Appendix Fig. 6 for examples). We first take a pre-trained image-to-sketch184

translation network TCD [39] trained on DCD, with L(i) = 5 sketches per image. Then, we fine-tune185

TCD on DT , with only L(i) = 1 manually drawn sketch per robot observation, to obtain our final186

image-to-sketch network T . Visualizations of sketches generated by T are available in Fig. 7.187

3.2 RT-Sketch188

With a way to translate image observations to sketches via T (Section 3.1), we can automatically189

augment the RT-1 dataset with goal sketches Dsketch with which to train our policy RT-Sketch.190

RT-Sketch Dataset The original RT-1 dataset Dlang = {in, {(ont , a
n
t )}

T (n)

t=1 }Nn=1 consists of N191

episodes with a paired natural language instruction i and demonstration trajectory {(ont , a
n
t )}

Tn

t=1.192

We can automatically hindsight-relabel such a dataset with goal images instead of language193

goals [42]. Let us denote the last step of a trajectory n as T (n). Then the new dataset with im-194

age goals instead of language goals is Dimg = {on
T (n) , {(o

n
t , a

n
t )}

T (n)

t=1 }Nn=1, where we treat the last195

observation of the trajectory on
T (n) as the goal gn. To produce a dataset for πsketch, we can simply196

replace on
T (n) with ĝn = T (on

T (n)) such that Dsketch = {ĝn, {(ont , a
n
t )}

T (n)

t=1 }Nn=1.197

To encourage the policy to afford different levels of input sketch specificity, we in practice produce198

goals by ĝn = A(on
T (n)), where A is a randomized augmentation function. A chooses between sim-199

ply applying T , T with colorization during postprocessing (e.g., superimposing a blurred version of200

the ground truth RGB image over the binary sketch), a Sobel operator [43] for edge detection, or an201

identity operation, which preserves the original image (Fig. 2). By co-training on all representations,202

we intend for RT-Sketch to handle a spectrum of specificity going from binary sketches; colorized203

sketches; edge detected images; and goal images (Appendix Fig. 7).204

RT-Sketch Model Architecture In our setting, we consider goals provided as sketches rather205

than language as was done in RT-1. The original RT-1 policy relies on a Transformer architecture206

backbone [40]. RT-1 first passes a history of D = 6 images through an EfficientNet-B3 model [41]207

producing image embeddings, which are tokenized, and separately extracts textual embeddings and208

tokens via FiLM [44] and a Token Learner [45]. The tokens are then fed into a Transformer which209

outputs bucketed actions: a 7-DoF output for the end-effector (x, y, z, roll, pitch, yaw, gripper210

width), 3-DoF for the mobile base, (x, y, yaw), and 1 mode-switching flag (base movement, arm211

movement, and termination). To accommodate our change in the input, we omit the FiLM language212

tokenization altogether. Instead, we concatenate a given visual goal with the history of images as213

input to EfficientNet, and extract tokens from its output, leaving the rest of the policy architecture214

unchanged. We train two policies using this architecture (Fig. 2): RT-Sketch refers to our policy215

trained from sketches, and RT-Goal-Image is a baseline policy trained from goal images.216
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Training RT-Sketch We now train πsketch on Dπsketch
from scratch (rather than finetuning an217

existing backbone) using the same procedure as in RT-1 [1], with the above architectural changes.218

We fit the policy using the behavioral cloning objective that minimizes the negative log-likelihood219

of an action [46]: J(πsketch) =
∑N

n=1

∑T (n)

t=1 log πsketch(a
n
t |g

n, {oj}
t
j=1)220

4 Experiments221

We seek to understand the ability of RT-Sketch to perform goal-conditioned manipulation as com-222

pared to language or image-conditioned policies. To that end, we test the following four hypotheses:223

H1: RT-Sketch is successful at goal-conditioned IL. While abstract, we hypothesize that sketches are specific224

enough to provide manipulation goals to a policy. We thus expect RT-Sketch to perform on a similar level to225

language (RT-1) or image goals (RT-Goal-Image) in straighforward tasks.226

H2: RT-Sketch is able to handle varying levels of specificity. Having trained RT-Sketch on sketches of227

varying levels of specificity, we expect it to be robust against sketch variations for the same scene.228

H3: Sketches enable better robustness to distractors than goal images. Sketches focus on task-relevant de-229

tails of a scene, while images capture everything. Therefore, we expect RT-Sketch to provide better robustness230

than RT-Goal-Image against irrelevant distractors in the environment.231

H4: Sketches are favorable when language is ambiguous. We expect RT-Sketch to provide a higher success232

rate compared to ambiguous language inputs when using RT-1.233

Figure 3: Goal Alignment Results: Average Likert scores for different policies rating perceived semantic
alignment (Q1) and spatial alignment (Q2) to a provided goal. Error bars indicate standard error. To back
up the visual insights from these barplots, we report additional findings on statistically significant differences
between methods from a non-parametric Mann-Whitney U test in Appendix B

.
4.1 Experimental Setup234

Policies We compare RT-Sketch to the original language-conditioned agent RT-1 [1], and a goal235

image-conditioned agent RT-Goal-Image. All policies are trained on a multi-task dataset of ∼ 80K236

real-world trajectories manually collected via VR teleoperation using the setup from Brohan et al.237

[1]. These trajectories span 6 common household object rearrangement tasks: move X near Y, place238

X upright, knock X over, open the X drawer, close the X drawer, and pick X from Y.239

Evaluation protocol To fairly compare different policies, we use a shared catalog of heldout eval-240

uation scenarios. Each scenario includes an initial image of the scene, a goal image with objects241

arranged as desired, a natural language task description, and hand-drawn sketches of the goal. At242

test time, a human operator retrieves a scenario, aligns the robot and scene using a reference im-243

age and a custom visualization utility, and places objects accordingly. We then roll out a policy244

conditioned on one of the available goals (language, image, sketch, etc.), and record a video for245

downstream evaluation (see Section 4.2). All experiments utilize the mobile Everyday Robot with246

an overhead camera and a 7-DoF arm with a parallel jaw gripper. All sketches for evaluation are247

collected by a single human annotator on a custom drawing interface with a tablet and digital stylus.248
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Metrics Defining a standardized evaluation protocol for goal alignment is non-trivial when binary249

task success is too coarse and image-similarity metrics like CLIP [47] can be brittle. We first measure250

performance by quantifying the policy precision as the pixel distance between object centroids in251

achieved and ground truth goal states, using manual keypoint annotations (see Fig. 9 in Appendix252

for examples). Although leveraging out-of-the box object detectors to detect object centroids is a253

possibility, we want to avoid conflating errors in detection (imprecise/wrong bounding box, etc.)254

with manipulation policy errors. Second, we gather human-provided assessments of perceived goal255

alignment via 2 Likert questions [48], rated from 1-7 (Strongly Disagree - Strongly Agree):256

(Q1) The robot achieves semantic alignment with the given goal during the rollout.257

(Q2) The robot achieves spatial alignment with the given goal during the rollout.258

Spatial Precision (RMSE in px.) Failure Occurrence (Excessive Retrying)
Skill RT-1 RT-Sketch RT-Goal-Image RT-1 RT-Sketch RT-Goal-Image

Move Near 5.43± 2.15 3.49± 1.38 3.89± 1.16 0.00 0.06 0.33

Pick Drawer 5.69± 2.90 4.77± 2.78 4.74± 2.01 0.00 0.13 0.20

Drawer Open 4.51± 1.55 3.34± 1.08 4.98± 1.16 0.00 0.00 0.07

Drawer Close 2.69± 0.93 3.02± 1.35 3.71± 1.67 0.00 0.00 0.07

Knock 7.39± 1.77 5.36± 2.74 5.63± 2.60 0.00 0.13 0.40

Upright 7.84± 2.37 5.08± 2.08 4.18± 1.54 0.06 0.00 0.27

Visual Distractors - 4.78± 2.17 7.95± 2.86 - 0.13 0.67

Language Ambiguity 8.03± 2.52 4.45± 1.54 - 0.40 0.13 -

Table 1: Spatial Precision / Failure Occurrence: We report (1) the spatial precision (root mean squared pixel error, RMSE) of the centroids

of manipulated objects in achieved vs. given reference goal images (left, darker=more precise) and (2) the occurrence of excessive retrying

failures (right, bold=least failure-prone).

For Q1, we present labelers with the policy rollout video along with the language goal. To answer259

Q2, we present labelers with a policy rollout video side-by-side with a visual goal (ground truth260

image, sketch, etc.). A policy can for instance achieve high semantic alignment for the language261

goal place can upright as long as the can ends up in the right orientation, but will not achieve spatial262

alignment unless the can is additionally in the correct position on the table.263

Appendix Fig. 18 visualizes the assessment interface. We perform these human assessment surveys264

across 62 unpaid individuals (non-expert, unfamiliar with our system) who are blind to whether they265

assess our approach or a baseline. We assign between 8 and 12 people to evaluate each of the 6266

different manipulation skills considered below. Note that this evaluation is NOT a user study, as267

we are not attempting to study humans, and is merely used as a fair means of labeling rollouts to268

measure goal alignment across policies.269

4.2 Experimental Results270

In this section, we present our findings related to the hypotheses of Section 4 by quantifying preci-271

sion (Table 1, Table 2) and goal alignment (Fig. 3)) across policies.272

H1: We evaluate all policies on each of the 6 skills on 15 different evaluation catalog scenarios per273

skill, varying objects (16 unique in total) and their placements. Overall, RT-Sketch performs com-274

parably to RT-1 and RT-Goal-Image in both semantic (Q1) and spatial alignment (Q2), achieving275

average ratings from ‘Agree’ to ‘Strongly Agree’ for nearly all skills (Fig. 3 (top)). The exception is276

upright; both RT-Sketch and RT-Goal-Image tend to position cans or bottles appropriately, without277

realizing the need for reorientation (Appendix Fig. 10). This results in low semantic alignment but278

somewhat higher spatial alignment ( Fig. 3 (top), darker gray in Table 1 (left)). RT-1, on the other279

hand, reorients cans and bottles successfully, but at the expense of higher spatial error (Appendix280

Fig. 10, light color in Table 1 (left)). With RT-Goal-Image in particular, we also observe the oc-281

currence of excessive retrying behavior, in which a policy attempts to align the current scene with a282

given goal with retrying actions that inadvertently disturb the scene, knocking objects off the table or283

undoing task progress. In Table 1, we report the proportion of rollouts in which this occurs (via man-284

ual inspection) across all policies. RT-Goal-Image is most susceptible, as a result of over-attending285

to pixel-level details, while RT-Sketch and RT-1 are far less vulnerable, given the higher-level goal286

abstractions that sketches and language offer.287

Skill Free-Hand Line Sketch Color Sketch Sobel Edges

Move Near 7.21 ± 2.76 3.49 ± 1.38 3.45 ± 1.03 3.36 ± 0.66

Drawer Open 3.75 ± 1.63 3.34 ± 1.08 2.48 ± 0.50 2.13 ± 0.25

Table 2: RT-Sketch Spatial Precision across Sketch Types: The relatively small differ-

ences in policy precision (RMSE) across different sketch types (i.e. minimal line sketches vs.

edge-detected images) suggests RT-Sketch’s robustness to input specificity (darker=better).

H2: Next, we assess RT-288

Sketch’s ability to handle vary-289

ing levels of sketch detail.290

Across 5 trials of the move near291

and open drawer skills, we see292

in Table 2 that many different sketch types result in reasonable levels of spatial precision, partic-293

ularly: free-hand sketches drawn completely free-form on a blank canvas, line sketches drawn by294
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tracing an image, line sketches with color shading, and edge-detected images. Appendix Fig. 17295

shows the interface used to sketch, and a detailed breakdown of the differences. As expected, So-296

bel edge-detected images incur the least error, but they are impractical and merely represent an297

upper-bound in terms of sketch detail. Even free-hand sketches, which do not necessarily preserve298

perspective projection, and line sketches, which are far sparser in detail, are not far behind in terms299

of precision or alignment ratings. This is reflected in the Likert ratings (Fig. 3 (left, bottom)) of300

free-hand sketches (around 4 on average), and line sketches (nearly 7 – “Strongly Agree” on aver-301

age). Adding color to line sketches does not further improve performance, but leads to interesting302

behavioral differences (see Appendix Fig. 11). In Appendix A.2, we also evaluate RT-Sketch on303

sketches drawn by 6 different individuals whose sketches were never seen during training and ob-304

serve little-to-no policy performance drop-off compared to in-distribution sketches.305

H3: Next, we compare the robustness of RT-Sketch and RT-Goal-Image to the presence of visual306

distractors. On 15 move X near Y trials from the evaluation catalog, we introduce 5 − 9 distractor307

objects into the initial visual scene, replicating the setup of the RT-1 generalization experiments308

referred to as medium-high difficulty [1]. In Table 1 (left, bottom), we see that RT-Sketch exhibits309

far lower spatial errors on average, while producing higher semantic and spatial alignment scores310

over RT-Goal-Image (Fig. 3 (middle, bottom)). RT-Goal-Image is easily confused by the distribution311

shift introduced by distractor objects, and often cycles between picking up and putting down the312

wrong object. RT-Sketch, on the other hand, ignores task-irrelevant objects not captured in a sketch313

and completes the task in most cases (see Appendix Fig. 12).314

H4: Finally, we evaluate whether sketches as a representation are favorable when language goals315

alone are ambiguous. On 15 evaluation catalog scenarios, we consider 3 types of language ambi-316

guity: instance (T1) (e.g., move apple near orange when multiple orange instances are present),317

somewhat out-of-distribution (OOD) phrasing (T2) (e.g., move left apple near orange), and highly318

OOD phrasing (T3) (e.g., complete the rainbow) (see Appendix Fig. 13). Directional cues (i.e.319

‘left’) should intuitively help resolve ambiguities, but were unseen during RT-1 training [1], and320

hence are out-of-distribution. In these scenarios, RT-Sketch achieves nearly half the error of RT-321

1 (Table 1 (left, bottom)), and a 2.33-fold and 2.71-fold score increase for semantic and spatial322

alignment, respectively (Fig. 3 (right, bottom)). For T1 and T2 scenarios, RT-1 often tries to pick up323

an instance of any object mentioned in the task string, but fails to make further progress (Appendix324

Fig. 14). This suggests the utility of sketches to express new, unseen goals with minimal overhead,325

when language can easily veer out of distribution (Appendix Fig. 15).326

Towards Multimodal Goal Specification For cases in which one modality alone is still am-327

biguous, we provide initial demonstrations showing that a multimodal (sketch-and-language con-328

ditioned) policy can be favorable to either alone, especially for tasks involving repositioning and329

reorientation (see Appendix A.3).330

4.3 Limitations and Failure Modes331

Firstly, the image-to-sketch generation network used in this work is fine-tuned on a dataset of332

sketches provided by a single human annotator. Although we empirically show that despite this, RT-333

Sketch can handle sketches drawn by other annotators (Appendix A.2), we have yet to investigate334

the effects of training RT-Sketch at scale with sketches produced by different people. An additional335

challenge is handling extremely minimal sketches. These kinds of sketches remain difficult for336

our policy to handle due to obvious perspective changes or missing details. Applying our existing337

sketch augmentations at more extremes may help further address this class of sketches. Secondly,338

we note that RT-Sketch shows some inherent biases towards performing certain skills it was trained339

on (i.e. performing directional movements that are more represented in the demonstration trajecto-340

ries). Performing unseen or complex tasks with low tolerance for error also remains challenging.341

However, we posit that addressing these issues may require policy-level rather than just goal-level342

improvements. For a detailed breakdown of RT-Sketch’s limitations and failure modes, please see343

Appendix F).344

5 Conclusion345

We propose RT-Sketch, a goal-conditioned policy for manipulation that takes a hand-drawn scene346

sketch as input, and outputs actions. We do so by developing a scalable way to generate paired347

sketch-trajectory training data via an image-to-sketch translation network, and modifying the ex-348

isting RT-1 architecture to take visual information as an input. Empirically, RT-Sketch not only349
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performs comparably to existing language or goal-image conditioning policies for a number of ma-350

nipulation skills, but is amenable to different degrees of sketch fidelity, and more robust to visual351

distractors or ambiguities. Our rigorous evaluations comprise 400 cumulative robot rollouts, eval-352

uated across 62 annotators (over 8 cumulative hours). Future work will focus on multimodal goal353

specification and moving towards even more abstract goal representations, detailed in Appendix C.354
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A Additional Evaluations501

In this section, we highlight the scale of our evaluations, additional findings from stress-testing502

RT-Sketch on sketches drawn by different individuals, and results from extending our policy to503

accommodate sketch+language conditioning.504

A.1 Experiments At A Glance505

Cumulatively, our results encompass the following: H1 experiments comprise 270 rollouts (6 skills506

x 15 trials x 3 methods), H2 comprises 40 rollouts (2 skills x 5 trials x 4 sketch types), H3 comprises507

30 rollouts (15 trials x 2 methods), and H4 comprises 30 rollouts (15 trials x 2 methods). All rollouts508

are cumulatively evaluated across 62 labelers (split across H1-4).509

A.2 Robustness to Input Sketches510

To test whether RT-Sketch generalizes to sketches drawn by different individu-511

als, we collect 30 line sketches (drawn via tracing) by 6 different annotators (whose512

sketches were never seen during training) on 5 trials of the move near scenario.513

Figure 4: Sketches Drawn by Other Annotators

We obtain the resulting rollouts produced by RT-514

Sketch with these sketches as input. Across rat-515

ings, RT-Sketch achieves high spatial alignment on516

sketches drawn by other annotators. Notably, the517

performance between sketches drawn by different518

annotators is similar, as well as the average across519

annotators compared to original policy performance520

on our original sketches (Fig. 4).521

A.3 Multimodal Goal Specification: Sketches + Language522

We train a sketch-and-language conditioned model by modifying the RT-1 architecture to use FiLM523

along with EfficientNet layers to tokenize both visual input and language, and concatenate them at524

the input. In H1 experiments (Fig. 3), we evaluate all policies on the upright skill, where the robot525

must place a can or bottle from a sideways orientation initially to an upright orientation at a desired526

location on the table. While RT-1 typically can reorient the can/bottle properly, it struggles to place527

the item in the intended location on the table, as reflected in this policy’s spatial imprecision in528

Table 1. Meanwhile, RT-Sketch struggles to reorient the can/bottle, since an imperfect sketch may529

fail to specify the exact desired orientation, but often places the can/bottle in the desired location.530

In Fig. 5, we see that while language alone (i.e. ”place the can upright”) can be ambiguous in terms531

of spatial placement, and a sketch alone does not encourage reorientation, we empirically see that532

the joint policy is better able to address the limitations of either modality alone. A similar pattern533

emerges for pick drawer (Fig. 5).

Figure 5: Multimodal Goal Specification: Sketch+Language: Empirically, we find that while a language-
only policy can struggle with spatial precision, and a sketch-only policy can fail to interpret intended object
orientations from a sketch alone, a multimodal policy is better able to address the limitations of both.534

B Additional Results: Goal Alignment535

In addition to the goal alignment results reported in Fig. 3 which are based on average Likert ratings,536

we additionally conduct a non-parametric Mann-Whitney U (MWU) test with α = 0.05 for H1-4537
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to evaluate the differences in goal alignment ratings across methods. This kind of statistical test is538

suitable for ordinal data and does not make specific assumptions on the normality or variance of the539

data distributions.540

B.1 H1 Findings541

The H1 experiments aim to evaluate how RT-Sketch compares to RT-1 and RT-Goal-Image on the542

standard RT-1 tabletop manipulation benchmark [1]. We conduct a MWU test under the null hy-543

pothesis that there is no difference in the goal alignment ratings from labelers across the methods.544

In Appendix Table 3 and Appendix Table 4, we report the pairs of methods for which the ratings545

yield a p-value of < 0.05, rejecting the null hypothesis, along with their U -statistic.546

Table 3: H1: RT-1 Benchmark - Semantic Alignment

Skill Method Pair Stat. p-value

Move Near

Pick Drawer (RT-1, RT-Goal Img) 5298.0 1.49× 10−3

Drawer Open (RT-1, RT-Goal Img) 4797.0 1.22× 10−3

Drawer Close (RT-1, RT-Goal Img) 4089.5 2.01× 10−8

Knock

Upright (RT-1, RT-Sketch) 16855.0 9.49× 10−29

(RT-1, RT-Goal Img) 10052.0 2.80× 10−18

(RT-Sketch, RT-Goal Img) 7210.5 5.62× 10−7

Table 4: H1: RT-1 Benchmark - Spatial Alignment

Skill Method Pair Stat. p-value

Move Near
Pick Drawer

Drawer Open (RT-1, RT-Goal Img) 4761.5 4.59× 10−3

Drawer Close (RT-1, RT-Sketch) 7780.0 1.82× 10−5

(RT-1, RT-Goal Img) 4869.0 3.62× 10−10

Knock

Upright (RT-1, RT-Sketch) 15085.0 1.55× 10−14

(RT-1, RT-Goal Img) 10656.0 1.32× 10−23

We conclude that for 5 of 6 and 4 of 6 skills, the null hypothesis is confirmed for semantic and spa-547

tial alignment ratings, respectively, suggesting that there is no dropoff in performance with sketches548

compared to traditional modalities. We do observe that for the upright skill, the rating difference549

between RT-Sketch and RT-1 is significant, and RT-Sketch suffers a slight performance drop as re-550

orientation is particularly difficult to infer from a sketch alone. However, we have since addresses551

this challenge with a policy conditioned on both sketches and language, which performs reorienta-552

tion better than sketches-alone and with more spatial precision than language-alone (Section 4.2).553

The highlighted rows above indicate when the goal alignment ratings for RT-Sketch compared to554

either RT-1 or RT-Goal-Image were found to be statistically significant. Notably, there are very few555

such findings, in alignment with H1. This is in accordance with what we observe Fig. 3: nearly556

no noticeable difference in performance between methods for most of the skills, and the slightly557

better performance of RT-1 compared to RT-Sketch (and the slightly better performance of RT-558

Sketch compared to RT-Goal-Image) for the upright skill.559

Table 5: H2: Robustness to Sketch Specificity - Semantic Alignment

Pair Stat. p-value

Free-Hand, Line Sketch 1059.0 9.58× 10−12

Free-Hand, Colored Sketch 960.0 2.54× 10−10

Free-Hand, Sobel Edges 1099.5 9.16× 10−11

Line Sketch, Colored Sketch - -
Line Sketch, Sobel Edges - -

Colored Sketch, Sobel Edges - -
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Table 6: H2: Robustness to Sketch Specificity - Spatial Alignment

Pair Stat. p-value

Free-Hand, Line Sketch 478.0 5.18× 10−17

Free-Hand, Colored Sketch 567.5 3.49× 10−13

Free-Hand, Sobel Edges 629.0 3.09× 10−14

Line Sketch, Colored Sketch - -
Line Sketch, Sobel Edges - -

Colored Sketch, Sobel Edges - -

B.2 H2 Findings560

For H2 experiments, we evaluate RT-Sketch’s robustness to the input specificity of the sketch. We561

find that across the 4 sketch types, the only pairings which garner statistically significant differences562

in ratings are free-hand sketches as compared to other types (Appendix Table 5 and Appendix Ta-563

ble 6). This is natural given the drastic perspective and geometric differences of free-hand sketches564

compared to those which are traced or derived from a transform of the goal image itself (edge565

detection).566

However, there are notably no statistically significant pairings between line-sketches and even the567

most detailed type of input representation we evaluate (Sobel Edges). This suggests that RT-Sketch is568

indeed able to handle a range of input specificity levels, and more importantly that RT-Sketch can569

deal with representations that are minimal and imperfect.570

Table 7: H3: Visual Distractors

Alignment Method Pair Stat. p-value

Semantic RT-Sketch, RT-Goal Img. 20622.5 4.62× 10−8

Spatial RT-Sketch, RT-Goal Img. 22233.0 3.07× 10−12

Table 8: H4: Language Ambiguity

Alignment Method Pair Stat. p-value

Semantic RT-Sketch, RT-1 4756.0 1.34× 10−24

Spatial RT-Sketch, RT-1 3680.5 3.53× 10−30

B.3 H3 and H4 Findings571

Finally, we conduct a MWU test over the semantic/spatial goal alignment ratings between RT-572

Sketch and RT-Goal-Image in the setting of visual distractors (H3, Appendix Table 7) as well as573

RT-Sketch and RT-1 in the setting of language ambiguity (H4, Appendix Table 8). We hypothe-574

size that RT-Sketch does indeed achieve higher ratings than baselines in these settings, as sketches575

are by nature 1) minimal, which may enable emergent robustness to distractors, and 2) agnostic to576

language.577

We do find a statistically significant difference across semantic and spatial ratings (highlighted in578

orange), concluding that RT-Sketch is favorable to traditional modalities in these particular settings.579

B.4 Summary of Mann-Whitney U Findings580

In short, the additional findings from conducting more thorough MWU testing over H1-4 align very581

closely with what we observe and report in Fig. 3 and suggest the merits of sketches across a range582

of scenarios.583

C Future Directions584

Learning a policy conditioned on view-invariant sketches can be an initial step before moving to585

even more abstract representations like schematics or diagrams for assembly tasks. Additionally,586

alternative ways to condition on sketches is a powerful avenue for future work. RT-Sketch currently587

only considers goal observations in sketch space, but projecting all observations to a sketch-based588
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or latent space is another underexplored but promising direction. Sketches are not without their589

own limitations, however, as ambiguity due to omitted details or poor quality sketches are persistent590

challenges. In the future, we are excited to continue exploring multimodal goal specification which591

can leverage the benefits of language, sketches, and other modalities to jointly resolve ambiguity592

from any single modality alone. This may include both end-to-end approaches that can jointly593

condition on multiple modalities, or hierarchical strategies that can leverage the spatial awareness594

of sketches and the summarization capabilities of VLMs to supplement ambiguous language with595

more informed descriptions derived from visual observations of a sketch. Lastly, exploring what596

combination of modalities humans prefer to use when providing goals, and how best they capture597

intent, is an important future direction not addressed in this work.598

D Sketch Goal Representations599

Since the main bottleneck to training a sketch-to-action policy like RT-Sketch is collecting a dataset600

of paired trajectories and goal sketches, we first train an image-to-sketch translation network T601

mapping image observations oi to sketch representations gi, discussed in Section 3. To train T , we602

first take a pre-trained network for sketch-to-image translation [39] trained on the ContourDrawing603

dataset of paired images and edge-aligned sketches (Fig. 6). This dataset contains L(i) = 5 crowd-604

sourced sketches per image for 1000 images. By pre-training on this dataset, we hope to embed a605

strong prior in T and accelerate learning on our much smaller dataset. Next, we finetune T on a606

dataset of 500 manually drawn line sketches for RT-1 robot images. We visualize a few examples of607

our manually sketched goals in Fig. 7 under ‘Line Drawings’.608

Figure 6: ContourDrawing Dataset: We visualize 6 samples from the ContourDrawing Dataset from [39]. For
each image, 5 separate annotators provide an edge-aligned sketch of the scene by outlining on top of the original
image. As depicted, annotators are encouraged to preserve main contours of the scene, but background details
or fine-grained geometric details are often omitted. Li et al. [39] then train an image-to-sketch translation
network T with a loss that encourages aligning with at least one of the given reference sketches.

Notably, while we only train T to map an image to a black-and-white line sketch ĝi, we consider609

various augmentations A on top of generated goals to simulate sketches with varied colors, affine610

and perspective distortions, and levels of detail. Fig. 7 visualizes a few of these augmentations,611

such as automatically colorizing black-and-white sketches by superimposing a blurred version of612

the original RGB image, and treating an edge-detected version of the original image as a generated613

sketch to simulate sketches with a lot of details. We generate a dataset for training RT-Sketch by614

‘sketchifying’ hind-sight relabeled goal images via T and A.615

Although RT-Sketch is only trained on generated line sketches, colorized line sketches, edge-616

detected images, and goal images, we find that it is able to handle sketches of even greater diversity.617
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Figure 7: Visual Goal Diversity: RT-Sketch is capable of handling a variety of visual goals at both train and test
time. RT-Sketch is trained on generated and augmented images like those shown on the right below ’Generated
Goals’. But it can also interpret free-hand, line sketches, and colored sketches at test time such as those on the
left below ’Manually Sketched Goals’.

This includes non-edge aligned free-hand sketches and sketches with color infills, like those shown618

in Fig. 7.619

D.1 Alternate Image-to-Sketch Techniques620

The choice of image-to-sketch technique we use is critical to the overall success of the RT-Sketch621

pipeline. We experiment with various other techniques before converging on the above approach.622

Recently, two recent works, CLIPAsso [36] and CLIPAScene [37] explore methods for automatically623

generating a sketch from an image. These works pose sketch generation as inferring the parameters624

of Bezier curves representing ”strokes” in order to produce a generated sketch with maximal CLIP-625

similarity to a given input image. These methods perform a per-image optimization to generate a626

plausible sketch, rather than a global batched operation across many images, limiting their scalabil-627

ity. Additionally, they are fundamentally more concerned with producing high-quality, aesthetically628

pleasing sketches which capture a lot of extraneous details.629

Figure 8: Alternate Image-to-Sketch Techniques

We, on the other hand, care about producing a minimal but reasonable-quality sketch. The second630

technique we explore is trying the pre-trained Photosketching GAN [39] on internet data of paired631

images and sketches. However, this model output does not capture object details well, likely due632

to not having been trained on robot observations, and contains irrelevant sketch details. Finally, by633

finetuning this PhotoSketching GAN on our own data, the outputs are much closer to real, hand-634

drawn human sketches that capture salient object details as minimally as possible. We visualize635

these differences in Fig. 8.636

E Evaluation Visualizations637

To further interpret RT-Sketch’s performance, we provide visualizations of the precision metrics638

and experimental rollouts. In Fig. 9, we visualize the degree of alignment RT-Sketch achieves,639

as quantified by the pixelwise distance of object centroids in achieved vs. given goal images. In640

Fig. 10, Fig. 11, Fig. 12, and Fig. 14, we visualize each policy’s behavior for H1, H2, H3 and H4,641

respectively. Fig. 13 visualizes the four tiers of difficulty in language ambiguity that we analyze for642

H4.643

17



Figure 9: Spatial Precision Visualization: We visualize four trials of RT-Sketch on the Move Near skill, along
with the measured spatial precision in terms of RMSE. To evaluate spatial precision, we have a human annotator
annotate the frame that is visually most aligned, and then keypoints for the object that was moved in this frame
and in the provided reference goal image. For each of the four trials, we visualize the rollout frames until
alignment is achieved, along with the labeled object centroids and the offset in achieved vs. desired positions.
The upper right example shows a failure of RT-Sketch in which the apple is moved instead of the chip bag,
incurring a high RMSE. These visualizations are intended to better contextualize the numbers from Table 1.

F RT-Sketch Failure Modes and Limitations644

While RT-Sketch is performant at several manipulation benchmark skills, capable of handling dif-645

ferent levels of sketch detail, robust to visual distractors, and unaffected by ambiguous language, it646

is not without failures and limitations.647

In Fig. 16, we visualize the failure modes of RT-Sketch. One failure mode we see with RT-Sketch is648

occasionally re-trying excessively, as a result of trying to align the scene as closely as possible. For649

instance, in the top row, Rollout Image 3, the scene is already well-aligned, but RT-Sketch keeps650

shifting the chip bag which causes some misalignment in terms of the chip bag orientation. Still,651

this kind of failure is most common with RT-Goal-Image (Table 1), and is not nearly as frequent652

for RT-Sketch. We posit that this could be due to the fact that sketches enable high-level spatial653

reasoning without over-attending to pixel-level details.654

One consequence of spatial reasoning at such a high level, though, is an occasional lack of precision.655

This is noticeable when RT-Sketch orients items incorrectly (second row) or positions them slightly656

off, possibly disturbing other items in the scene (third row). This may be due to the fact that sketches657

are inherently imperfect, which makes it difficult to reason with such high precision.658

Finally, we see that RT-Sketch occasionally manipulates the wrong object (rows 4 and 5). Interest-659

ingly, we see that a fairly frequent pattern of behavior is to manipulate the wrong object (orange in660

row 4) to the right target location (near green can in row 4). This may be due to the fact that the661

sketch-generating GAN has occasionally hallucinated artifacts or geometric details missing from662

the actual objects. Having been trained on some examples like these, RT-Sketch can mistakenly663

perceive the wrong object to be aligned with an object drawn in the sketch. However, the sketch still664

indicates the relative desired spatial positioning of objects in the scene, so in this case RT-Sketch still665

attempts to align the incorrect object with the proper place.666

Finally, the least frequent failure mode is manipulating the wrong object to the wrong target location667

(i.e. opening the wrong drawer handle). This is most frequent when the input is a free-hand sketch,668

and could be mitigated by increasing sketch detail (Table 2).669
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Figure 10: H1 Rollout Visualization: We visualize the performance of RT-1, RT-Sketch, and RT-Goal-
Image on two skills from the RT-1 benchmark (upright and knock). For each skill, we visualize the goal
provided as input to each policy, along with the policy rollout. We see that for both skills, RT-1 obeys the se-
mantic task at hand by successfully placing the can upright or sideways, as intended. Meanwhile, RT-Sketch and
RT-Goal-Image struggle with orienting the can upright, but successfuly knock it sideways. Interestingly, both
RT-Sketch and RT-Goal-Image are able to place the can in the desired location (disregarding can orientation)
whereas RT-1 does not pay attention to where in the scene the can should be placed. This is indicated by the
discrepancy in position of the can in the achieved versus goal images on the right. This trend best explains
the anomalous performance of RT-Sketch and RT-Goal-Image in perceived Likert ratings for the upright task
(Fig. 3), but validates their comparably higher spatial precision compared to RT-1 across all benchmark skills
(Table 1).

G Evaluation and Assessment Interfaces670
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Figure 11: H2 Rollout Visualization: For the open drawer skill, we visualize four separate rollouts of RT-
Sketch operating from different input types. Free-hand sketches are drawn without outlining over the original
image, such that they can contain marked perspective differences, partially obscured objects (drawer handle),
and roughly drawn object outlines. Line sketches are drawn on top of the original image using the sketching
interface we present in Appendix Fig. 17. Color sketches merely add color infills to the previous modality,
and Sobel Edges represent an upper bound in terms of unrealistic sketch detail. We see that RT-Sketch is able
to successfully open the correct drawer for any sketch input except the free-hand sketch, without a noticeable
performance gain or drop. For the free-hand sketch, RT-Sketch still recognizes the need for opening a drawer,
but the differences in sketch perspective and scale can occasionally cause the policy to attend to the wrong
drawer, as depicted.
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Figure 12: H3 Rollout Visualization: We visualize qualitative rollouts for RT-Sketch and RT-Goal-Image for
3 separate trials of the move near skill subject to distractor objects. In Column 2, we highlight the relevant
non-distractor objects that the policy must manipulate in order to achieve the given goal. In Trial 1, we see
that RT-Sketch successfuly attends to the relevant objects and moves the blue chip bag near the coke can.
Meanwhile, RT-Goal-Image is confused about which blue object to manipulate, and picks up the blue pepsi
can instead of the blue chip bag (A). In Trial 2, RT-Sketch successfully moves an apple near the fruit on the
left. A benefit of sketches is their ability to capture instance multimodality, as any of the fruits highlighted in
Column 2 are valid options to move, whereas this does not hold for an overspecified goal image. RT-Goal-
Image erroneously picks up the green chip bag (B) instead of a fruit. Finally, Trial 3 shows a failure for both
policies. While RT-Sketch successfully infers that the green can must be moved near the red one, it accidentally
knocks over the red can (C) in the process. Meanwhile, RT-Goal-Image prematurely drops the green can and
instead tries to pick the green chip bag (D).
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Figure 13: H4 Tiers of Difficulty: To test H4, we consider language instructions that are either ambiguous
due the presence of multiple similar object instances (T1), are somewhat out-of-distribution for RT-1 (T2), or
are far out-of-distribution and difficult to specify concretely without lengthier descriptions (T3). Each image
represents the ground truth goal image paired with the task description.
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Figure 14: H4 Rollout Visualization (T1 as visualized in Fig. 13): One source of ambiguity in language
descriptions is mentioning an object for which there are multiple instances present. For example, we can easily
illustrate three different desired placements of an orange in the drawer via a sketch, but an ambiguous instruction
cannot easily specify which orange is relevant to pick and place. In all rollouts, RT-Sketch successfully places
the correct orange in the drawer, while RT-1 either picks up the wrong object (A), fails to move to the place
location (B), or knocks off one of the oranges (C). Although in this case, the correct orange to manipulate
could easily be specified with a spatial relation like pick up the ⟨ left/middle/right ⟩ orange, we show below in
Appendix Fig. 15 that this type of language is still out of the realm of RT-1’s semantic familiarity.
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Figure 15: H4 Rollout Visualization (T2-3 as visualized in Fig. 13): For T2, we consider language with
spatial cues that intuitively should help the policy disambiguate in scenarios like the oranges in Fig. 14. How-
ever, we find that RT-1 is not trained to handle such spatial references, and this kind of language causes a
large distribution shift leading to unwanted behavior. Thus, for the top rollout of trying to move the chip bag
to the left where there is an existing pile, RT-Sketch completes the skill without issues, but RT-1 attempts to
open the drawer instead of even attempting to rearrange anything on the countertop (A). For T3, we consider
language goals that are even more abstract in interpretation, without explicit objects mentioned or spatial cues.
Here, sketches are advantageous in their ability to succinctly communicate goals (i.e. visual representation of
a rainbow), whereas the corresponding language task string is far too underspecified and OOD for the policy to
handle (B).
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Figure 16: RT-Sketch Failure Modes
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Figure 17: Sketching UI: We design a custom sketching interface for manually collecting paired robot images
and sketches with which to train T , and for sketching goals for evaluation. The interface visualizes the current
robot observation, and provides the ability to draw on a digital screen with a stylus. The above visualization
shows the color-sketching modality, which is a traced representation with color shading. The interface supports
different colors and erasure, along with either tracing over the image (line-sketching) or drawing free-form over
a blank canvas (free-hand sketches). We note that intuitively, drawing on top of the image is not an unreasonable
assumption to make, since current agent observations are typically readily available compared to a goal image,
for instance. Additionally, the overlay is intended to make the sketching interface easy for the user to provide,
without having to eyeball edges for the drawers or handles blindly. This provides helpful guides for sketching
and is an easy way to obtain sketches that more closely align with current observations for free.
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Figure 18: Assessment UI: For all skills and methods, we ask labelers to assess semantic and spatial alignment
of the recorded rollout relative to the ground truth semantic instruction and visual goal. We show the interface
above, where labelers are randomly assigned to skills and methods (anonymized). The results of these surveys
are reported in Fig. 3.
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